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Numerous theoretical and numerical works have been devoted to the study of the algebraic decrease at large
times of the velocity autocorrelation function of particles in a fluid. The derivation of this behavior, the
so-called long-time tail, generally based on linearized hydrodynamics, makes no reference to any specific
characteristic of the particle interactions. However, in the literature doubts have been expressed about the
possibility that by numerical simulations the long-time tail can be observed in the whole fluid phase domain of
systems in which the particles interact by soft-core and attractive pair potentials. In this work, extensive and
accurate molecular-dynamics simulations establish that the predicted long-time tail of the velocity autocorre-
lation function exists in a low-density fluid of particles interacting by a soft-repulsive potential and near the
liquid-gas critical point of a Lennard-Jones system. These results contribute to the confirmation that the
algebraic decay of the velocity autocorrelation function is universal in these fluid systems.
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I. INTRODUCTION

The long-time tail of the velocity autocorrelation function
�VAF�, first discovered by the pioneering work of Alder and
Wainwright �1� using molecular-dynamics �MD� simulations
of elastically colliding hard disks and spheres, came as a
complete surprise. This result was in contradiction with the
prediction of an exponential decay of the VAF supported by
the explicit solutions of almost all known solvable models,
such as the linearized Boltzmann equation �2� and the
Fokker-Planck equation �3�.

Alder and Wainwright found that the VAF long-time tail
was well fitted by the analytic form �t−3/2. They explained
this unexpected behavior by a simple hydrodynamic model,
describing the motion of a hard disk or sphere by that of a
circular or spherical particle in a continuum fluid formed by
the surrounding disks or spheres. The forward motion of the
particle gives rise in the fluid to a vortex, whose size is
approximately 3 particle diameters. This vortex mode pre-
dominates at long times, leading to the long-time tail �t−3/2

of the VAF.
For fluid systems and without reference to the details of

the particle interactions, Ernst et al. �4,5� were able to derive
the asymptotic time behavior of the VAF by using the linear-
ized Navier-Stokes equation and assuming a local statistical
equilibrium in every point of the system. This latter condi-
tion means that, at a mesoscopic scale ��1000 particles�, the
system properties can be described in terms of density, tem-
perature, or transport coefficients �6�. For systems of hard
disks and hard spheres, Dorfman and Cohen �7� derived the
long-time tail of the VAF from kinetic theory. They showed
that a sequence of correlated binary collisions, ring colli-

sions, is the main molecular process responsible for the vor-
tex formation leading to the slow decay of the VAF.

Light-scattering experiments �8,9� or diffusive wave spec-
troscopy �10,11� indicate the presence of the long-time tail of
the VAF of colloidal particles immersed in a fluid. These
experimental results agree with the theoretical description of
the Brownian particle motion �12,13�. Neutron scattering ex-
periments �14,15� also indicate that, in atomic liquids, the
VAF decreases algebraically at large times. However, present
experimental evidence of the VAF long-time tail is restricted
to a few types of liquids �colloids, alkaline liquids, and liquid
argon� and a few thermodynamic states.

Furthermore, in MD simulations, doubts remain about the
possibility of observing the long-time tail in a low-density
fluid of soft-repulsive particles �16� and in a Lennard-Jones
�LJ� fluid in thermodynamic states close to the liquid-vapor
critical point �17�. According to the simulation results �16� it
seems that the nonexponential decrease of the VAF with time
is easily observed only for systems at moderate densities,
since, in this work, the �t−3/2 tail is not found at low densi-
ties. The simulations of Ref. �17� indicate that, for a LJ sys-
tem, the VAF decays at long times in agreement with the
theoretical exponent −3/2 only at high densities, and that,
along an isochore close to the critical density, the VAF de-
creases with an exponent equal to −3.

Motivated by these apparent disagreements between these
simulation results and the theoretical prediction of the VAF
asymptotic time behavior, it is shown in this paper, by means
of accurate and extensive MD simulations, that the VAF ex-
hibits the predicted �t−3/2 power-law decay for a fluid of
soft-repulsive particles at low densities and for a LJ fluid
close to the critical point, confirming the theoretical claim of
a universal power-law tail of the VAF in all the thermody-
namic states of simple fluids �5�, independent of the particle
interactions.

In Sec. II we give a theoretical overview, and in Sec. III
the MD simulation details. Section IV presents and discusses
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the simulation results for the VAF. Conclusions are presented
in Sec. V.

II. THEORETICAL OVERVIEW

The expression of the velocity autocorrelation function
for a three-dimensional �3D� fluid at large times is given by
�4�

�v�0� · v�t�� =
2kBT

�m

1

��4��D + ��t��3/2 = �t−3/2, �1�

where v is the particle velocity vector at time t, kB is the
Boltzmann’s constant, T is the temperature, m is the mass of
the particles, � is the particle density, and D is the self-
diffusion coefficient. Here, �, the kinematic viscosity of the
fluid, is equal to � / �m��, � being the shear viscosity. The
angular brackets indicate an equilibrium ensemble average.

The derivation of Eq. �1� is made under the general as-
sumption that the approach of nonequilibrium distributions
to local equilibrium distributions evolves at long times ac-
cording to the laws of hydrodynamics �4�. The following
arguments, which summarize this derivation, are taken from
�18,19�. We consider a d-dimensional system of N particles
in equilibrium, containing a tagged particle with an initial
velocity v�0�=v0. From this initial nonequilibrium state, the
evolution of the system towards equilibrium is supposed to
be described by means of linearized hydrodynamic equations

�P�r,t�
�t

= D�2P�r,t� , �2�

�u��r,t�
�t

= − � � � �� � u��r,t�� , �3�

where P�r , t� is the probability density for the tagged particle
to be at position r at time t, and u��r , t� is the transverse part
of the velocity density field. The longitudinal part of the
velocity density field does not appear in the equations be-
cause its contribution to the velocity autocorrelation decays
exponentially �19�.

From the Fourier transforms of Eqs. �2� and �3�, it is
shown that

P̃�k,t� = e−Dk2t, �4�

ũ��k,t� = �v0 −
�v0 · k�k

k2 	e−�k2t. �5�

With the assumption that, at long times, the tagged par-
ticle has the same average velocity as its neighboring par-
ticles, we have

v�t� =
 ddrP�r,t�
1

�
u��r,t� =

1

�

1

�2��d 
 ddkP̃�k,t�ũ��− k,t� .

�6�

The insertion of Eqs. �4� and �5� into Eq. �6� gives

v�t� =
1

�

1

�2��d 
 ddk�v0 −
�v0 · k�k

k2 	e−��+D�k2t

=
1

�

d − 1

d

1

��4��D + ��t��d/2v0, �7�

where the �d−1� /d coefficient comes from the fact that only
the transverse part of the velocity field contributes at large
times.

Averaging over v0 with respect to the Maxwell-
Boltzmann velocity distribution

�v�0� · v�t�� =
1

�

d − 1

d

1

��4��D + ��t��d/2

�
 ddv0� m

2�kBT
	d/2

v0
2e−mv0

2/2kBT, �8�

leads to the expression of the VAF given by Eq. �1�

�v�0� · v�t�� =
�d − 1�kBT

m�

1

��4��D + ��t��d/2 . �9�

The derivation of Eq. �1� from kinetic theory, valid for
particle systems with short-range repulsive potentials such as
the hard disk or sphere systems, is more sophisticated
�7,20,21�. As mentioned above, the vortex mode responsible
for the long-time tail of the VAF finds its origin in so-called
ring collisions, a sequence of correlated binary collisions
where the initial momentum of the tagged particle is trans-
ferred to the surrounding particles in a ringlike motion. It can
even be found from more complex derivations �20� that the
t−3/2 long-time behavior of the VAF is the first term in an
infinite series of general order t−l, where l=1/2n−2 with n
integer 	1 and −2
 l
−3/2.

In the expression of the VAF derived by kinetic theory,
the so-called “bare” transport coefficients D0 and �0 appear
�7�, corresponding to a bare value �0 of the long-time tail
amplitude �. D and � are computed by integrating the time
autocorrelation functions of particle velocities and stress ten-
sor components; the bare transport coefficients are estimates
of D and � in which, in these integrals, the contribution of
the long-time tails is missing. The values of D0 and �0 are
close but not identical to those of D and � of the hydrody-
namical approach. The numerical simulations compute a
long-time tail with a bare amplitude for times between 10
and 50 mean collision times; it is only for longer times that
the hydrodynamic amplitude � is obtained �19�.

In summary, the asymptotic behavior of the VAF has been
determined either by means of hydrodynamical assumptions,
independent of the details of the particle interactions, or by
kinetic theory for hard-core particles. Both approaches pre-
dict the �t−3/2 long-time tail of the VAF.

III. MOLECULAR DYNAMICS SIMULATIONS

To determine the long-time behavior of the VAF by MD
simulation, we have to be sure that there is no influence of
the periodic boundary conditions of the simulation cell on
the VAF computation �21,22�. To achieve this goal, we
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choose a maximum correlation time tmax smaller than the
time needed by a sound wave to cross the entire periodic
cell, i.e.,

tmax 
 �N/�cs
3�1/3, �10�

where cs is the speed of sound in the fluid. It is expected that,
at times larger than tmax, the VAF becomes strongly influ-
enced by the sound modes �22�. Thus, before computing the
VAF for any system of an arbitrary, but reasonably large
number of particles �N�500�, it is first necessary to estimate
the velocity of sound cs at the state point we want to study
from the formula �23�,

cs =� 1

m
� �P

��
	

T
+

T

m�2� �E

�T
	

V

� �P

�T
	

V

2

, �11�

where P is the pressure, E is the total energy per particle, and
V is the volume. Once the value of cs is obtained, the maxi-
mum correlation time tmax is estimated by Eq. �10�.

To test the theoretical prediction �t−3/2 of the behavior of
the VAF at long times against the simulation results, we have
to make an estimate of �, which depends on the diffusion
coefficient and kinematic viscosity. We use the Green-Kubo
integral formula �24� to calculate the self-diffusion coeffi-
cient,

D =
1

3N
�
i=1

N 

0

�

�vi�0� · vi�t��dt =
kBT

m



0

�

dtFVAF�t� ,

�12�

where the average over all the particles is used to reduce the
statistical uncertainty on the normalized velocity autocorre-
lation function FVAF�t�= ��i�vi�0� ·vi�t��� / ��i�vi�0� ·vi�0���.
The kinematic viscosity � is obtained through the shear vis-
cosity � given by �24�,

� = lim
tu→�

��tu� =
1

kBTV



0

tu

�xz�t�xz�0��dt , �13�

where xz is an off-diagonal element of the stress tensor

xz = �
i=1

N �mvixviz +
1

2�
j�i

N

xijFij
z 	 , �14�

with Fij
z being the z component of the force between particles

i and j, and xij the x component of the distance vector joining
particles i and j.

In this paper, we use the reduced quantities T*=kBT /�,
�*=�3, t*= t�� /m2, and r*=r /, where � and  are the
energy and length parameters of the LJ potentials vLJ�r�. The
unit of time is thus �0=�m2 /�.

We have considered mainly two systems: a low-density
system, at �*=0.2 and T*=2.07, of 32 000 particles interact-
ing via a soft-repulsive potential,

v�r� = vLJ�r� + � = 4��

r
	12

− �

r
	6� + � for r 
 21/6

�15�

=0 for r � 21/6 , �16�

and a LJ system near the liquid-vapor critical point at �*

=0.3 and T*=1.35 of 10 976 particles interacting by a LJ
potential truncated at a cutoff distance equal to r*=6.5. This
value of the cutoff is the same as that used in the work of
Meier et al. �17�, in which a t−3 behavior of the VAF was
reported near the critical point. In addition, the VAF of a LJ
system at �*=0.3 and T*=1.98 has been calculated. This
computation was done to establish that the time dependence
of the VAF asymptotic decay for states of a LJ system near
and far from the critical point was identical within the statis-
tical error. Such a comparison allows us to show that the
long-time decay of the VAF near the critical point is not
misinterpreted.

The simulations were realized at constant energy using
the standard Verlet algorithm with a time step �t*=0.003 for
the soft-sphere fluid and �t*=0.001 for the LJ fluid near the
critical point to insure the stability of the total energy value
to within 0.01%. The simulations were carried out for
100 000 equilibration time steps followed by 10�106 time
steps, during which the VAF or the stress-correlation func-
tion were computed over blocks of 2000�t* to allow an
evaluation of the statistical errors.

For the soft-repulsive particle system at �*=0.2 and T*

=2.07, the computed thermodynamic properties are P*

=0.632, E*=3.242, and cs=2.682 /�0 and, near the LJ criti-
cal point at �*=0.3 and T*=1.35: P*=0.153, E*=−0.15, and
cs=1.45 /�0. The thermodynamic state of the LJ system at
�*=0.3 and T*=1.97 corresponds to P*=0.478, E*=1.05,
and cs=2.48 /�0. From Eq. �10�, we find the maximum cor-
relation time tmax

* equal to 20.2 in the first case, 22.8 near the
LJ critical point, and 13.3 for the LJ system at �*=0.3 and
T*=1.97. The derivatives on P and E in Eq. �11� were com-
puted from canonical ensemble MD simulations performed
at densities and temperatures close to those of the considered
thermodynamic states.

IV. VELOCITY AUTOCORRELATION RESULTS

We give in Fig. 1 the normalized VAF multiplied by t3/2

for two considered systems. In such a plot the time domain
where the VAF decays as t−3/2 appears as a constant plateau
within the statistical error. The maximum correlation times
are those determined by cs. The statistical error on the nor-
malized VAF is estimated to be ±2�10−5, which gives a
relative error of 10% on the asymptotic part of the VAF. The
data clearly indicate the existence of t−3/2 behavior in both
cases.

For the soft-particle system, the asymptotic tail appears
above t*=10. This explains why, in the work of McDonough
et al. �16�, it was not possible to observe the long-time tail at
a density �*=0.25 because it occurs at larger times than the
maximum correlation time considered in this work, which is
equal to �5. Noticing that the system size is equal to 4000
particles, it was not possible to consider correlation times
larger than 7 due to the coupling between diffusion and
sound modes �22�.

Figure 2 shows a log-log plot of the VAF versus reduced
time for the soft-repulsive fluid. A linear fit of the data in the
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range 11� t*�18 gives: ln FVAF�t�= �−4.05±0.08�
− �1.50±0.03�ln t*, leading to a value of � fit

=0.0174±0.0015. In order to validate the theoretical value of
�, we have computed the diffusion coefficient from the inte-
gral of the VAF �cf. Eq. �12�� up to t*=11, in agreement with
the remark quoted above �19�. The value found was D*

=0.294±0.002. Since the long-time tail begins at t*=11, a
contribution equal to �0.015 should add to this value of D*.
A similar computation was done for the kinematic viscosity.
Figure 3 shows the stress-correlation function Eq. �14� com-

puted up to a correlation time tu equal to 5�0. Beyond this
time, the stress-correlation function is zero within the statis-
tical error, larger than that of the FVAF�t� by a factor of ��N,
i.e., almost two orders of magnitude. By using tu=5�0 in Eq.
�13�, a contribution to � can be missing, due to the long-time
part of the stress-correlation function. This contribution can
account for about 15–20% of the � value as was shown �25�.
In Fig. 3, the plot of the integral ��tu� over the stress-tensor
correlation is also included. The plateau gives the value of �
and that of the kinematic viscosity equal to �*=1.71±0.08,
to which we should add a systematic error of �0.3. The
corresponding calculated value for the amplitude �cal
=0.026±0.006 including the systematic error on �*. Then,
the agreement between the fitted and theoretical values of �
is correct. The difference of 20–30% between the � esti-
mates, reported in the literature �16,26�, is probably due to
the uncertainty of �*.

Figure 4 gives a log-log plot of the VAF versus reduced
time for the LJ fluid near the critical point. A linear fit of the
data in the range 9� t*�15 gives. ln Fvaf�t�= �−3.66±0.05�
− �1.53±0.02�ln t*, leading to a value of � fit

=0.0258±0.0015. As for the soft-sphere system, the compu-
tation of the diffusion coefficient and kinematic viscosity
gives the values D*=0.620±0.007 and �� =1.20±0.06. The
contribution of the long-time tail to D* should amount to
�0.018. The stress-tensor correlation function versus re-
duced time is given in Fig. 5 together with its integral. In-
serting these values of D* and �� into Eq. �1� gives the result
�cal=0.02. The difference between the fitted and calculated
values in this case amounts to 13%, which stays within the
statistical and systematic errors of �* as for the soft-sphere
system. In the inset of Fig. 4, the log-log plot of the VAF for
the LJ system at �*=0.30 and T*=1.97 is displayed. The

FIG. 1. The normalized VAF multiplied by �t /�0�3/2 vs time in
reduced unit t /�0. The dashed-dotted line and black squares: the
system of soft-repulsive particles at �*=0.2 and T*=2.07; the
dashed line and black circles: LJ system at �*=0.3 and T*=1.35.

FIG. 2. A log-log plot of the normalized VAF of the soft-
repulsive particle system at �*=0.2 and T*=2.07. Circles and error
bars: the simulation results; thick line: a linear fit to the simulation
results.

FIG. 3. For a soft-repulsive particle system at �*=0.2 and T*

=2.07, the stress tensor correlation function �cf. Eq. �14�� vs time in
a reduced unit t /�0; inset: the integral ��t� �cf. Eq. �13�� vs time in
a reduced unit t /�0; the circle size corresponds to the statistical
error.
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linear fit, performed in the time domain 7.4� t*�13.4, i.e.,
2.0� ln t*�2.6, is

ln Fvaf�t� = �− 3.89 ± 0.06� − �1.53 ± 0.02�ln t*

and is quite similar to that found near the LJ critical point.
This satisfactory agreement shows that the general slowing
down of the correlation decay near the critical point does not
preclude the observation of the long-time decay of the VAF.
The present results confirm the universality of the t−3/2 be-
havior of the VAF at long times, also in the temperature and
density domain close to the liquid-vapor critical point.

V. CONCLUSION

The velocity autocorrelation function has been computed
by constant energy MD simulations for a fluid of soft-

repulsive particles at low density and for a LJ system near
the critical point. By using larger systems, and by correlating
over longer times than those used in the literature �16,17�,
we show that the velocity autocorrelation function presents
the universal asymptotic behavior �t−3/2 as predicted by the
theory. The difference between the computed and fitted val-
ues of the amplitude � of the asymptotic part of the VAF is
mainly due to the uncertainty of the kinematic viscosity.

These results remove all ambiguities related to the exis-
tence of the long-time tail in almost all domains of the fluid
phase. However, close to triple point, the onset of long-lived
damped oscillations in the VAF due to the backscattering of
particles by their next neighbors �24� precludes the compu-
tation of the long-time tail. Therefore, the observation of the
VAF asymptotic behavior in these thermodynamic states re-
mains a challenge.
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